资源类型

期刊论文 420

年份

2024 1

2023 28

2022 45

2021 27

2020 22

2019 28

2018 28

2017 24

2016 30

2015 22

2014 25

2013 21

2012 15

2011 17

2010 17

2009 11

2008 11

2007 15

2006 6

2005 6

展开 ︾

关键词

风险评估 4

地震勘探 2

地震区划 2

地震波 2

地震灾害 2

城市规划 2

大坝 2

大跨度桥梁 2

安全评价 2

安全风险 2

微地震监测 2

核电厂 2

风险分析 2

3D层位 1

ACP1000 1

ANSYS 1

AP1000 1

GIS 1

MCMC 1

展开 ︾

检索范围:

排序: 展示方式:

Application of BCP-2007 and UBC-97 in seismic vulnerability assessment of gravity designed RC buildings

Muhammad Usman ALI, Shaukat Ali KHAN, Muhammad Yousaf ANWAR

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 396-405 doi: 10.1007/s11709-017-0436-4

摘要: Recent earthquakes in Pakistan (Kashmir 2005, Balochistan 2008, and Balochistan 2013) revealed the vulnerability of existing building stock and the deficiencies in the then prevalent Pakistan Seismic Code (PSC-86 (1986)). This study investigates, through an analytical framework, the seismic vulnerability of these and other such buildings, in accordance with the newly developed Building Code of Pakistan – Seismic Provisions 2007 (BCP-SP 07). Detailed failure mode is presented for buildings designed as per the new code. Collapse of structures is predicted for only 8% increase in PGA after moderate damage. A previously developed method, based on Eurocode-8 (2004), is used as baseline. A deficient reinforced concrete frame, typical to local building practices, is analyzed and assessed for vulnerability using the BCP- SP 07 (2007) framework. A comparison is drawn for the same building, based on Eurocode-8 (2004). Derived vulnerability curves show that the previous framework overestimated the damage and hence the vulnerability. Comparison of vulnerability parameters with previous studies show slight difference in performance of buildings.

关键词: Building Code of Pakistan     earthquake engineering     seismic effects     vulnerability assessment of buildings     vulnerability framework    

Seismic vulnerability assessment of water supply network in Tianjin, China

Yanxi CHEN,Zhiguang NIU,Jiaqi BAI,Yufei WANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 767-775 doi: 10.1007/s11783-014-0632-6

摘要: The water supply network (WSN) system is a critical element of civil infrastructure systems. Its complexity of operation and high number of components mean that all parts of the system cannot be simply assessed. Earthquakes are the most serious natural hazard to a WSN, and seismic risk assessment is essential to identify its vulnerability to different stages of damage and ensure the system safety. In this paper, using a WSN located in the airport area of Tianjin in northern China as a case study, a quantitative vulnerability assessment method was used to assess the damage that the water supply pipelines would suffer in an earthquake, and the finite element software ABAQUS and fuzzy mathematic theory were adopted to construct the assessment method. ABAQUS was applied to simulate the seismic damage to pipe segments and components of the WSN. Membership functions based on fuzzy theory were established to calculate the membership of the components in the system. However, to consider the vulnerability of the whole system, fuzzy cluster analysis was used to distinguish the importance of pipe segments and components. Finally, the vulnerability was quantified by these functions. The proposed methodology aims to assess the performance of WSNs based on pipe vulnerabilities that are simulated and calculated by the model and the mathematical method based on data of damage. In this study, a whole seismic vulnerability assessment method for a WSN was built, and these analyses are expected to provide necessary information for a mitigation plan in an earthquake disaster.

关键词: water supply network     seismic vulnerability assessment     finite element     fuzzy mathematics    

Seismic fragility assessment of revised MRT buildings considering typical construction changes

Rakesh DUMARU, Hugo RODRIGUES, Humberto VARUM

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 241-266 doi: 10.1007/s11709-019-0560-4

摘要: The present study investigates the vulnerability assessment of the prototype revised Mandatory Rule of Thumb (MRT) buildings initially designed and detailed for three storeys bare frame building; later modified through variable number of storeys (three, four, and five) and different arrangement of infill walls (bare frame, soft-storey, irregular infilled, and fully infilled). The application of infill walls increases the fundamental frequencies, stiffness, and maximum strength capacity, but reduces the deformation capability than the bare frame building. The vulnerability was also reduced through infill walls, where the probability of exceeding partial-collapse and collapse damage reduced by 80% and 50%, respectively. Furthermore, the increased in storeys (three to five) also increases the failure probability, such that partial-collapse and collapse for fully infilled increases by almost 55% and 80%, respectively. All obtained results and discussions concluded that the structural sections and details assigned for MRT building is not sufficient if considered as bare frame and soft-storey. And increase in number of storeys causes building highly vulnerable although the infill walls were considered.

关键词: mid-rise buildings     revised NBC 205: 2012     masonry infill walls     configurations of infill walls     vulnerability assessment and inter-storey drift    

The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for

Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 609-622 doi: 10.1007/s11709-020-0623-6

摘要: This paper discusses the adoption of Artificial Intelligence-based techniques to estimate seismic damage, not with the goal of replacing existing approaches, but as a mean to improve the precision of empirical methods. For such, damage data collected in the aftermath of the 1998 Azores earthquake (Portugal) is used to develop a comparative analysis between damage grades obtained resorting to a classic damage formulation and an innovative approach based on Artificial Neural Networks (ANNs). The analysis is carried out on the basis of a vulnerability index computed with a hybrid seismic vulnerability assessment methodology, which is subsequently used as input to both approaches. The results obtained are then compared with real post-earthquake damage observation and critically discussed taking into account the level of adjustment achieved by each approach. Finally, a computer routine that uses the ANN as an approximation function is developed and applied to derive a new vulnerability curve expression. In general terms, the ANN developed in this study allowed to obtain much better approximations than those achieved with the original vulnerability approach, which has revealed to be quite non-conservative. Similarly, the proposed vulnerability curve expression was found to provide a more accurate damage prediction than the traditional analytical expressions.

关键词: Artificial Neural Networks     seismic vulnerability     masonry buildings     damage estimation     vulnerability curves    

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

《结构与土木工程前沿(英文)》   页码 855-869 doi: 10.1007/s11709-023-0972-z

摘要: Seismic analysis of historical masonry bridges is important for authorities in all countries hosting such cultural heritage assets. The masonry arch bridge investigated in this study was built during the Roman period and is on the island of Rhodes, in Greece. Fifteen seismic records were considered and categorized as far-field, pulse-like near-field, and non-pulse-like near-field. The earthquake excitations were scaled to a target spectrum, and nonlinear time-history analyses were performed in the transverse direction. The performance levels were introduced based on the pushover curve, and the post-earthquake damage state of the bridge was examined. According to the results, pulse-like near-field events are more damaging than non-pulse-like near-field ground motions. Additionally the bridge is more vulnerable to far-field excitations than near-field events. Furthermore, the structure will suffer extensive post-earthquake damage and must be retrofitted.

关键词: masonry arch bridges     seismic behavior     modal properties     pulse-like records     nonlinear time history analysis    

Machine learning-based seismic assessment of framed structures with soil-structure interaction

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 205-223 doi: 10.1007/s11709-022-0909-y

摘要: The objective of the current study is to propose an expert system framework based on a supervised machine learning technique (MLT) to predict the seismic performance of low- to mid-rise frame structures considering soil-structure interaction (SSI). The methodology of the framework is based on examining different MLTs to obtain the highest possible accuracy for prediction. Within the MLT, a sensitivity analysis was conducted on the main SSI parameters to select the most effective input parameters. Multiple limit state criteria were used for the seismic evaluation within the process. A new global seismic assessment ratio was introduced that considers both serviceability and strength aspects by utilizing three different engineering demand parameters (EDPs). The proposed framework is novel because it enables the designer to seismically assess the structure, while simultaneously considering different EDPs and multiple limit states. Moreover, the framework provides recommendations for building component design based on the newly introduced global seismic assessment ratio, which considers different levels of seismic hazards. The proposed framework was validated through comparison using non-linear time history (NLTH) analysis. The results show that the proposed framework provides more accurate results than conventional methods. Finally, the generalization potential of the proposed framework was tested by investigating two different types of structural irregularities, namely, stiffness and mass irregularities. The results from the framework were in good agreement with the NLTH analysis results for the selected case studies, and peak ground acceleration (PGA) was found to be the most influential input parameter in the assessment process for the case study models investigated. The proposed framework shows high generalization potential for low- to mid-rise structures.

关键词: seismic hazard     artificial neural network     soil-structure interaction     seismic analysis    

Performance assessment of innovative seismic resilient steel knee braced frame

Tony T. Y. YANG,Yuanjie LI

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 291-302 doi: 10.1007/s11709-016-0340-3

摘要: Buckling restrained knee braced truss moment frame (BRKBTMF) is a novel and innovative steel structural system that utilizes the advantages of long-span trusses and dedicated structural fuses for seismic applications. Steel trusses are very economical and effective in spanning large distance. However, conventional steel trusses are typically not suitable for seismic application, due to its lack of ductility and poor energy dissipation capacity. BRKBTMF utilizes buckling restrained braces (BRBs) as the designated structural fuses to dissipate the sudden surge of earthquake energy. This allows the BRKBTMF to economically and efficiently create large span structural systems for seismic applications. In this paper, a prototype BRKBTMF office building located in Berkeley, California, USA, was designed using performance-based plastic design procedure. The seismic performance of the prototype building was assessed using the state-of-the-art finite element software, OpenSees. Detailed BRB hysteresis and advanced element removal technique was implemented. The modeling approach allows the simulation for the force-deformation response of the BRB and the force redistribution within the system after the BRBs fracture. The developed finite element model was analyzed using incremental dynamic analysis approach to quantify the seismic performance of BRKBTMF. The results show BRKBTMF has excellent seismic performance with well controlled structural responses and resistance against collapse. In addition, life cycle repair cost of BRKBTMF was assessed using the next-generation performance-based earthquake engineering framework. The results confirm that BRKBTMF can effectively control the structural and non-structural component damages and minimize the repair costs of the structure under different ranges of earthquake shaking intensities. This studies conclude that BRKBTMF is a viable and effective seismic force resisting system.

关键词: buckling restrained brace     innovative structural system     collapse simulation     seismic assessment    

Assessment of robustness of structures: Current state of research

Colin BRETT, Yong LU

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 356-368 doi: 10.1007/s11709-013-0220-z

摘要: The concept of structural robustness and relevant design guidelines have been in existence in the progressive collapse literature since the 1970s following the partial collapse of the Ronan Point apartment building; however, in the more general context, research on the evaluation and enhancement of structural robustness is still relatively limited. This paper is aimed to provide a general overview of the current state of research concerning structural robustness. The focus is placed on the quantification and the associated evaluation methodologies, rather than specific measures to ensure prescriptive robustness requirements. Some associated concepts, such as redundancy and vulnerability, will be discussed and interpreted in the general context of robustness such that the corresponding methodologies can be compared quantitatively using a comparable scale. A framework methodology proposed by the authors is also introduced in line with the discussion of the literature.

关键词: structural robustness     abnormal exposure     vulnerability     collapse     consequence    

Liquefaction assessment using microtremor measurement, conventional method and artificial neural network

Sadegh REZAEI,Asskar Janalizadeh CHOOBBASTI

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 292-307 doi: 10.1007/s11709-014-0256-8

摘要: Recent researchers have discovered microtremor applications for evaluating the liquefaction potential. Microtremor measurement is a fast, applicable and cost-effective method with extensive applications. In the present research the liquefaction potential has been reviewed by utilization of microtremor measurement results in Babol city. For this purpose microtremor measurements were performed at 60 measurement stations and the data were analyzed by suing Nakmaura’s method. By using the fundamental frequency and amplification factor, the value of vulnerability index ( ) was calculated and the liquefaction potential has been evaluated. To control the accuracy of this method, its output has been compared with the results of Seed and Idriss [ ] method in 30 excavated boreholes within the study area. Also, the results obtained by the artificial neural network (ANN) were compared with microtremor measurement. Regarding the results of these three methods, it was concluded that the threshold value of liquefaction potential is . On the basis of the analysis performed in this research it is concluded that microtremors have the capability of assessing the liquefaction potential with desirable accuracy.

关键词: liquefaction     microtremor     vulnerability index     artificial neural networks (ANN)     microzonation    

Topology optimization and seismic collapse assessment of shape memory alloy (SMA)-braced frames: Effectiveness

Aydin HASSANZADEH; Saber MORADI

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 281-301 doi: 10.1007/s11709-022-0807-3

摘要: This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy (SMA) braces. Optimal SMA-braced frames (SMA-BFs) with either Fe-based SMA or NiTi braces are determined in a performance-based seismic design context. The topology optimization is performed on 5- and 10-story SMA-BFs considering the placement, length, and cross-sectional area of SMA bracing members. Geometric, strength, and performance-based design constraints are considered in the optimization. The seismic response and collapse safety of topologically optimal SMA-BFs are assessed according to the FEMA P695 methodology. A comparative study on the optimal SMA-BFs is also presented in terms of total relative cost, collapse capacity, and peak and residual story drift. The results demonstrate that Fe-based SMA-BFs exhibit higher collapse capacity and more uniform distribution of lateral displacement over the frame height while being more cost-effective than NiTi braced frames. In addition to a lower unit price compared to NiTi, Fe-based SMAs reduce SMA material usage. In frames with Fe-based SMA braces, the SMA usage is reduced by up to 80%. The results highlight the need for using SMAs with larger recoverable strains.

关键词: topology optimization     shape memory alloy     Fe-based SMA     steel braced frames     performance-based seismic design     collapse assessment    

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 117-130 doi: 10.1007/s11709-021-0788-7

摘要: Proven research output on the behavior of structures made of waste copper slag concrete can improve its utilization in the construction industry and thereby help to develop a sustainable built environment. Although numerous studies on waste copper slag concrete can be found in the published literature, no research has focused on the structural application of this type of concrete. In particular, the variability in the strength properties of waste copper slag concrete, which is required for various structural applications, such as limit state design formulation, reliability-based structural analysis, etc., has so far not attracted the attention of researchers. This paper quantifies the uncertainty associated with the compressive-, flexural- and split tensile strength of hardened concrete with different dosages of waste copper slag as fine aggregate. Best-fit probability distribution models are proposed based on statistical analyses of strength data generated from laboratory experiments. In addition, the paper presents a reliability-based seismic risk assessment of a typical waste copper slag incorporated reinforced concrete framed building, considering the proposed distribution model. The results show that waste copper slag can be safely used for seismic resistant structures as it results in an identical probability of failure and dispersion in the drift demand when compared with a conventional concrete building made of natural sand.

关键词: waste copper slag     quantification of variability     goodness-of-fit test     seismic risk assessment     PSDM    

Hazard and vulnerability evaluation of water distribution system in cases of contamination intrusion

Kunlun XIN, Tao TAO, Yong WANG, Suiqing LIU

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 839-848 doi: 10.1007/s11783-012-0409-8

摘要: In this paper, it proposed an index system for hazard and vulnerability evaluations of water distribution networks, based on the simulation of contamination events caused by pollutant injections at different junctions. It attempted to answer the following two questions in the case of contamination events: 1) Which are the most hazardous junctions? 2) Which are the most vulnerable junctions? With EPANET toolkit, it simulated the propagation of the contaminant, and calculated the peak concentration of the contaminant and mass delivered at different nodes. According to types of consumers, different weights were assigned to the consumer nodes for assessing the influence of the contaminant on the consumers. Using the method proposed herein, both the hazard index and vulnerability index were calculated for each node in the pipe network. The presented method was therefore applied to the water network of the city of Zhenjiang, which contains two water plants, two booster pump stations with storage tanks. In conclusion, the response time, the relationships between the peak concentration of contaminant and the total absorption are the most important factors in hazard and vulnerability evaluation of the water distribution network.

关键词: water distribution network     hazard     vulnerability     contaminant accident    

Modeling considerations in seismic assessment of RC bridges using state-of-practice structural analysis

Ricardo MONTEIRO, Miguel ARAÚJO, Raimundo DELGADO, Mário MARQUES

《结构与土木工程前沿(英文)》 2018年 第12卷 第1期   页码 109-124 doi: 10.1007/s11709-017-0389-7

摘要: The increasing awareness of the general society toward the seismic safety of structures has led to more restrictive performance requirements hence, many times, to the need of using new and more accurate methods of analysis of structures. Among these, nonlinear static procedures are becoming, evermore, the preferred choice of the majority of design codes, as an alternative to complete nonlinear time-history analysis for seismic design and assessment of structures. The many available software tools should therefore be evaluated and well understood, in order to be easily and soundly employed by the practitioners. The study presented herein intends to contribute to this need by providing further insight with respect to the use of commonly employed structural analysis software tools in nonlinear analysis of bridge structures. A comparison between different nonlinear modeling assumptions is presented, together with the comparison with real experimental results. Furthermore, alternative adaptive pushover procedures are proposed and applied to a case study bridge, based on a generic plastic hinge model. The adopted structural analysis program proved to be accurate, yielding reliable estimates, both in terms of local plastic hinge behavior and global structural behavior.

关键词: nonlinear analysis     pushover     RC bridges     structural modelling software    

福岛核事故后中国广东核电集团核电厂抗震设计和评估进展

毛庆,吴应喜,张健,孟阿军,张涛,杨春菊,刘芳

《中国工程科学》 2013年 第15卷 第4期   页码 46-51

摘要:

本文介绍了核电站抗震设计要求、在建和运行核电站的抗震设计情况以及运行核电站遭遇地震灾害的情况,简述了福岛核事故后世界各国核电站在抗震方面采取的措施,针对中国广东核电集团在福岛核事故后的行动进行了详细介绍,并提出了新建核电厂在抗震设计和评估方面的策略,以期通过技术手段持续提升核电站的抗震能力。

关键词: 抗震设计基准     超设计基准地震     抗震裕量分析(SMA)     隔震    

Seismic performance of composite moment-resisting frames achieved with sustainable CFST members

A. SILVA,Y. JIANG,L. MACEDO,J. M. CASTRO,R. MONTEIRO,N. SILVESTRE

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 312-332 doi: 10.1007/s11709-016-0345-y

摘要: The main objective of the research presented in this paper is to study the bending behaviour of Concrete Filled Steel Tube (CFST) columns made with Rubberized Concrete (RuC), and to assess the seismic performance of moment-resisting frames with these structural members. The paper describes an experimental campaign where a total of 36 specimens were tested, resorting to a novel testing setup, aimed at reducing both the preparation time and cost of the test specimens. Different geometrical and material parameters were considered, namely cross-section type, cross-section slenderness, aggregate replacement ratio, axial load level and lateral loading type. The members were tested under both monotonic and cyclic lateral loading, with different levels of applied axial loading. The test results show that the bending behaviour of CFST elements is highly dependent on the steel tube properties and that the type of infill does not have a significant influence on the flexural behaviour of the member. It is also found that Eurocode 4 is conservative in predicting the flexural capacity of the tested specimens. Additionally, it was found that the seismic design of composite moment-resisting frames with CFST columns, according to Eurocode 8, not only leads to lighter design solutions but also to enhanced seismic performance in comparison to steel frames.

关键词: concrete filled steel tubes     rubberized concrete     composite frames     seismic performance assessment    

标题 作者 时间 类型 操作

Application of BCP-2007 and UBC-97 in seismic vulnerability assessment of gravity designed RC buildings

Muhammad Usman ALI, Shaukat Ali KHAN, Muhammad Yousaf ANWAR

期刊论文

Seismic vulnerability assessment of water supply network in Tianjin, China

Yanxi CHEN,Zhiguang NIU,Jiaqi BAI,Yufei WANG

期刊论文

Seismic fragility assessment of revised MRT buildings considering typical construction changes

Rakesh DUMARU, Hugo RODRIGUES, Humberto VARUM

期刊论文

The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for

Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE

期刊论文

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

期刊论文

Machine learning-based seismic assessment of framed structures with soil-structure interaction

期刊论文

Performance assessment of innovative seismic resilient steel knee braced frame

Tony T. Y. YANG,Yuanjie LI

期刊论文

Assessment of robustness of structures: Current state of research

Colin BRETT, Yong LU

期刊论文

Liquefaction assessment using microtremor measurement, conventional method and artificial neural network

Sadegh REZAEI,Asskar Janalizadeh CHOOBBASTI

期刊论文

Topology optimization and seismic collapse assessment of shape memory alloy (SMA)-braced frames: Effectiveness

Aydin HASSANZADEH; Saber MORADI

期刊论文

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

期刊论文

Hazard and vulnerability evaluation of water distribution system in cases of contamination intrusion

Kunlun XIN, Tao TAO, Yong WANG, Suiqing LIU

期刊论文

Modeling considerations in seismic assessment of RC bridges using state-of-practice structural analysis

Ricardo MONTEIRO, Miguel ARAÚJO, Raimundo DELGADO, Mário MARQUES

期刊论文

福岛核事故后中国广东核电集团核电厂抗震设计和评估进展

毛庆,吴应喜,张健,孟阿军,张涛,杨春菊,刘芳

期刊论文

Seismic performance of composite moment-resisting frames achieved with sustainable CFST members

A. SILVA,Y. JIANG,L. MACEDO,J. M. CASTRO,R. MONTEIRO,N. SILVESTRE

期刊论文